

Devoir à la maison N°2

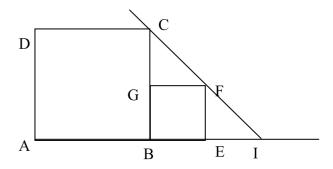
A.S:2008/2009

Classes: 2sc

Exercice N°1:

Soit ABC un triangle équilatéral direct ; A', B' et C' les milieux respectifs de [BC], [AC] et [AB] G le centre de graviter de ABC et ζ son cercle circonscrit

- 1) Soit r_1 la rotation indirecte de centre G et d'angle $\frac{2\pi}{3}$ Vérifier que $r_1(A)=C$, $r_1(B)=A$ et $r_1(B')=A'$
- 2) Soit r la rotation directe de centre A et d'angle $\frac{\pi}{3}$
- a) Vérifier que r(B) = C et r(C') = B'
- b) Construire C'' = r(C)
- 3) Soit G' le centre de gravité du triangle ACC"
- a) Montrer que r(G) = G'


Construire ζ ' l'image de ζ par r

Exercice N°2:

La figure ci-contre représente un carré ABCD dont les côtés mesure 4cm et BEFG un carré de côtés 2cm

Les droites (CF) et (AB) se coupent en I

- 1/a) Montrer que (AC)//(BF)
 - b) Déterminer le réel k tel que $\overrightarrow{IB} = k \overrightarrow{IA}$
- 2/ Soit h l'homothétie de centre I et le rapport $\frac{1}{2}$
 - a) Montrer que h(C) = F et h(B) = E
 - b) Déterminer et construire L l'image de G par h
 - c) Exprimer \overrightarrow{BG} en fonction de \overrightarrow{AD}
 - d) Déterminer l'image de D par h
- 3/ Montrer que les points I,L,G et D sont alignés

Exercice N°3:

On considère la suite U définie sur N par $\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{U_n^2 + 2} \end{cases}$

- 1/a) Calculer U₁ et U₂
 - b) Vérifier que la suite U n'est ni arithmétique ni géométrique
- 2/ On pose V la suite définie sur \square par $V_n = U_n^2$
 - a) Montrer que V est une suite arithmétique de raison 2
 - b) Exprimer V_n puis U_n en fonction de n
 - c) Calculer $S = V_0 + V_1 + \dots + V_{n-1}$
 - d) En déduire le produit $P = 2^{V_0}.2^{V_1}.....2^{V_{n-1}}$
- 3/ Soit W la suite définie sur \square par $W_n = 2^{V_n}$
 - a) Montrer que W est une suite géométrique de premier terme W₀=2 et de raison 4
 - b) Exprimer en fonction de n la somme $S' = W_2 + W_3 + \dots + W_n$

Exercice N°4:

Soit ABC un triangle direct rectangle et isocèle en A et O=B*C ζ le cercle circonscrit au triangle ABC, les tangentes en A et C se coupent en O'

Soit R la rotation directe de centre A et d'angle $\frac{\pi}{2}$

- 1/a) Déterminer R(B)
 - b) Montrer que AOCO' est un carré
 - c) Déduire que R(O)=O'
 - d) Déterminer R((BC))
- 2/a) Construire C'=R(C)
 - b) Montrer que A=B*C'
- 3/ Soit N un point variable du cercle ζ et N' tel que ANN' est un triangle direct rectangle et isocèle en A Déterminer et construire l'ensemble des points N' lorsque N varie
- 4/ Soit M un point du plan et M'=R(M)
 - a) Montrer que (BM) et (CM') sont perpendiculaires
 - b) Soit H le point d'intersection de (BM) et (CM') Déterminer l'ensemble des points H lorsque M varie

